Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thin porous indium tin oxide nanoparticle films : effects of annealing in vacuum and air

Identifieur interne : 009315 ( Main/Repository ); précédent : 009314; suivant : 009316

Thin porous indium tin oxide nanoparticle films : effects of annealing in vacuum and air

Auteurs : RBID : Pascal:05-0426432

Descripteurs français

English descriptors

Abstract

Electrical and optical properties were investigated in porous thin films consisting of In2O3:Sn (indium tin oxide; ITO) nanoparticles. The temperature-dependent resistivity was successfully described by a fluctuation-induced tunneling model, indicating a sample morphology dominated by clusters of ITO nanoparticles separated by insulating barriers. An effective-medium model, including the effect of ionized impurity scattering, was successfully fitted to measured reflectance and transmittance. Post-deposition treatments were carried out at 773 K for 2 h in both air and vacuum. It is shown that vacuum annealing increases either the barrier width or the area between two conducting clusters in the samples and, furthermore, an extra optical absorption occurs close to the band gap. A subsequent air annealing then reduces the effect of the barriers on the electrical properties and diminishes the absorption close to the band gap.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0426432

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thin porous indium tin oxide nanoparticle films : effects of annealing in vacuum and air</title>
<author>
<name sortKey="Ederth, J" uniqKey="Ederth J">J. Ederth</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, PO Box 534</s1>
<s2>75121 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>75121 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huitaker, A" uniqKey="Huitaker A">A. Huitaker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, PO Box 534</s1>
<s2>75121 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>75121 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niklasson, G A" uniqKey="Niklasson G">G. A. Niklasson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, PO Box 534</s1>
<s2>75121 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>75121 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heszler, P" uniqKey="Heszler P">P. Heszler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, PO Box 534</s1>
<s2>75121 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>75121 Uppsala</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research Group of Laser Physics of the Hungarian Academy of Sciences, University of Szeged, Box 406</s1>
<s2>6701 Szeged</s2>
<s3>HUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<wicri:noRegion>6701 Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Doorn, A R" uniqKey="Van Doorn A">A. R. Van Doorn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Philips Applied Technologies, PO Box 218/SAQ</s1>
<s2>5600 MD Eindhoven</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 MD Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jongerius, M J" uniqKey="Jongerius M">M. J. Jongerius</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Philips Applied Technologies, PO Box 218/SAQ</s1>
<s2>5600 MD Eindhoven</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 MD Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burgard, D" uniqKey="Burgard D">D. Burgard</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Nanogate GmbH, Gewerbepark Eschberger Weg</s1>
<s2>66121 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Sarre (Land)</region>
<settlement type="city">Sarrebruck</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Granqvist, C G" uniqKey="Granqvist C">C. G. Granqvist</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, PO Box 534</s1>
<s2>75121 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>75121 Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0426432</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0426432 INIST</idno>
<idno type="RBID">Pascal:05-0426432</idno>
<idno type="wicri:Area/Main/Corpus">009C93</idno>
<idno type="wicri:Area/Main/Repository">009315</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0947-8396</idno>
<title level="j" type="abbreviated">Appl. phys., A Mater. sci. process. : (Print)</title>
<title level="j" type="main">Applied physics. A, Materials science & processing : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Annealing</term>
<term>Effective medium model</term>
<term>Electrical conductivity</term>
<term>Electron-impurity interactions</term>
<term>Fluctuations</term>
<term>Impurity ionization</term>
<term>Impurity scattering</term>
<term>Indium oxides</term>
<term>Microstructure</term>
<term>Nanoparticles</term>
<term>Optical properties</term>
<term>Porous materials</term>
<term>Reflection spectrum</term>
<term>Thin films</term>
<term>Tin oxides</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recuit</term>
<term>Spectre absorption</term>
<term>Propriété optique</term>
<term>Spectre réflexion</term>
<term>Conductivité électrique</term>
<term>Fluctuation</term>
<term>Effet tunnel</term>
<term>Microstructure</term>
<term>Modèle milieu effectif</term>
<term>Ionisation impureté</term>
<term>Diffusion impureté</term>
<term>Interaction électron impureté</term>
<term>Matériau poreux</term>
<term>Indium oxyde</term>
<term>Etain oxyde</term>
<term>Nanoparticule</term>
<term>Couche mince</term>
<term>7867B</term>
<term>7363B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electrical and optical properties were investigated in porous thin films consisting of In
<sub>2</sub>
O
<sub>3</sub>
:Sn (indium tin oxide; ITO) nanoparticles. The temperature-dependent resistivity was successfully described by a fluctuation-induced tunneling model, indicating a sample morphology dominated by clusters of ITO nanoparticles separated by insulating barriers. An effective-medium model, including the effect of ionized impurity scattering, was successfully fitted to measured reflectance and transmittance. Post-deposition treatments were carried out at 773 K for 2 h in both air and vacuum. It is shown that vacuum annealing increases either the barrier width or the area between two conducting clusters in the samples and, furthermore, an extra optical absorption occurs close to the band gap. A subsequent air annealing then reduces the effect of the barriers on the electrical properties and diminishes the absorption close to the band gap.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0947-8396</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. phys., A Mater. sci. process. : (Print)</s0>
</fA03>
<fA05>
<s2>81</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thin porous indium tin oxide nanoparticle films : effects of annealing in vacuum and air</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EDERTH (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HUITAKER (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NIKLASSON (G. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HESZLER (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VAN DOORN (A. R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JONGERIUS (M. J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BURGARD (D.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GRANQVIST (C. G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, PO Box 534</s1>
<s2>75121 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Research Group of Laser Physics of the Hungarian Academy of Sciences, University of Szeged, Box 406</s1>
<s2>6701 Szeged</s2>
<s3>HUN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Philips Applied Technologies, PO Box 218/SAQ</s1>
<s2>5600 MD Eindhoven</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Nanogate GmbH, Gewerbepark Eschberger Weg</s1>
<s2>66121 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>1363-1368</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16194A</s2>
<s5>354000131858800070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0426432</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics. A, Materials science & processing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electrical and optical properties were investigated in porous thin films consisting of In
<sub>2</sub>
O
<sub>3</sub>
:Sn (indium tin oxide; ITO) nanoparticles. The temperature-dependent resistivity was successfully described by a fluctuation-induced tunneling model, indicating a sample morphology dominated by clusters of ITO nanoparticles separated by insulating barriers. An effective-medium model, including the effect of ionized impurity scattering, was successfully fitted to measured reflectance and transmittance. Post-deposition treatments were carried out at 773 K for 2 h in both air and vacuum. It is shown that vacuum annealing increases either the barrier width or the area between two conducting clusters in the samples and, furthermore, an extra optical absorption occurs close to the band gap. A subsequent air annealing then reduces the effect of the barriers on the electrical properties and diminishes the absorption close to the band gap.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H67B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Fluctuation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Fluctuations</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Modèle milieu effectif</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Effective medium model</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Modelo medio efectivo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Ionisation impureté</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Impurity ionization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ionización impureza</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diffusion impureté</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Impurity scattering</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Interaction électron impureté</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electron-impurity interactions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Matériau poreux</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Porous materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium oxyde</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium oxides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Etain oxyde</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Tin oxides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7867B</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7363B</s0>
<s4>INC</s4>
<s5>61</s5>
</fC03>
<fN21>
<s1>297</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 009315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 009315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:05-0426432
   |texte=   Thin porous indium tin oxide nanoparticle films : effects of annealing in vacuum and air
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024